Know your Water

2020 Annual Drinking Water Quality (Consumer Confidence Report for the year 2019)

GSSUD

Special Notice

(For people with weakened immune systems)

July 1, 2020

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk for infections. These people should seek advice about drinking water from their health care providers. The EPA/ Centers for Disease control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at(1-800-426-4791)

Our Drinking water meets or exceeds all Federal (EPA) Drinking Water Requirements

This report is a summary of the quality of the water we provide our customers. The analysis was made by using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in the attached pages. We hope this information helps you become more knowledgeable about what's in your drinking water.

Water Sources

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water before treatment include: microbes, inorganic contaminants, pesticides, herbicides, radioactive contaminants, and organic chemical contaminants.

Our drinking water is obtained from **SURFACE** water sources. It comes from the following: Lake/river/Reservoir/Aquifer: **Lake Lavon. & Lake Tawakoni** The TCEQ has completed a source Water Susceptibility for all drinking water systems that own their sources. This report describes the susceptibility and types of contaminants that may come into contact with the drinking water source bases on human activities and natural conditions. The system (s) from which we purchase our water received the assessment report. For more information on source water assessments and protection efforts at our system, please contact us.

Source Water Susceptibility Assessment (SWSA)

A Source Water Susceptibility Assessment (SWSA) for your drinking water sources is currently being updated by the Texas Commission on Environmental Quality (TCEQ) and should be provided to us this year. The report will describe the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment will allow the NTMWD to focus our source water protection strategies. For more information on source water assessments and protection efforts of our system, contact NTMWD Public Relations Coordinator Denise Hickey at dhickey@ntmwd.com or 972-442-5405.

Unregulated Contaminant Monitoring Regulations (UCMR)

"Unregulated contaminants are those for which EPA has not established drinking water standards. The purpose of unregulated contaminant monitoring is to assist EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulations are warranted. Any unregulated contaminants detected are reported in the following table. For additional information and data, visit http://www.epa.gove/safewater/ ucmr/ucmr2/index.html or call the Safe Drinking Water Hotline at (800) 426-4791

En Espanol

Este informe incluye informacion importante sobre el agua potable. Si tiene preguntas o comentarios sobre este informe en espanol, favor de llamar tel. (972) 452-3388 para hablar con una persona bilingue en espanol.

> Water is a Necessity Not A Luxury!

Action Level (AL) -The concentration of a contaminant which, if exceeded,

triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The highest permissible level of a

contaminant in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The level of a contaminant

in drinking water below in which there is no known or expected health risk.

MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of disin-

fectant allowed in drinking water. There is convincing evidence that addition

of a disinfectant is necessary for control of microbial contaminants. Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a

drinking water disinfectant below in which there is no known or expected risk to

health. MRDLGs do not reflect the benefits of the use of disinfectants to control

microbial contamination.

MFL - million fibers per liter (a measure of asbestos) (mrem/yr) - millirem/year

(a measure of radioactivity)

N/A - Not Applicable ND - Not Detected

Non-Regulated Contaminants - Non-regulated contaminants are those for which

EPA has not established drinking water standards. The purpose of unregulated

contaminant monitoring is to assist the EPA in determining the occurrences in

drinking water and whether future regulations are warranted.

NTU - Nephelometric Turbidity Units (this is the unit used to measure water turbidity)

(oocysts/L) - oocysts per liter (an oocyst is the spore phase, inactive form of Cryptosporidium)

(pCi/L) - picocuries per liter (a measure of radioactivity) (ppb) - parts per billion, or micrograms per liter (μ g/L)

(**ppm**) - parts per million, or milligrams per liter (mg/L) (**ppq**) - parts per quadrillion, or picograms per liter

All Drinking water may contain contaminants.

When drinking water meets federal standards there may not be any health based benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at (1-800-426-4791.

Lead & Copper Information

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead

in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa/gov/safewater/lead".

Secondary Constituents

Many constituents (such as calcium, sodium, or iron) which are often found in drinking water, can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and

are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondary's are not required to be reported in this document but they may greatly affect

the appearance and taste of your water.

(ppt) - parts per trillion, or nanograms per liter Total Coliform - Total coliform bacteria are used as indicators of microbial contamination of drinking water because testing is easily performed. While not disease-causing organisms themselves, they are often found in association with other microbes that are capable of causing disease. Coliform bacteria are more hardy than many disease causing organisms; therefore, their absence from water is a good indication that the water is microbiologically safe for human consumption.

Total Organic Carbon - Total organic carbon (TOC) has no health effects. The disinfectant can combine with TOC to form disinfection byproducts. Disinfection is necessary to ensure that water does not have unacceptable levels of pathogens. By-products of disinfection include trihalomethanes (THMs) and haloacetic acids (HAA) which are reported in this publication.

Treatment Technique (TT) - A required process intended to reduce the level of a contaminant in drinking water.

Turbidity - Turbidity is a measure of the clarity of water. Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea, and associated headaches. **Unregulated Contaminants -** Bromoform, chloroform,

dichlorobromomethane, and dibromochloromethane are disinfection byproducts. There is no maximum contaminant level for these chemicals at the entry point to distribution.

Wylie Treatment Plant

			Colifo	rm Ba	acter	ria		
Maximum Contami- nant Level Goal	mum Co	liform Maxi- ontaminant evel	Highest No. of Posi- tive	Fecal Coliform or	Total Pos E. Col cal Co	No. of sitive li or Fe- oliform nples	Viola- tion	Likely Source of Contamination
0		/e monthly mple	0.00	0		0		Naturally present in the environment.
	onthly tests	s found no fe				acteria	that are	naturally present in the environment and
are used as an indica	ator that of	ther potentia						
	I	1	Regulate		lami	nanu	S	I
Disinfectants and Disinfection By-	Collec- tion Date	Highest Level De-	Range of Levels Detected	MCLG	MCL	Units	Viola- tion	Likely Source of Contamination
Total Haloacetic Acids (HAA5)	2019	22.7	37.1	No goal for the total	60	ppb	No	By-product of drinking water disinfection
Total Trihalome- thanes (TTHM)	2019	43.3	77.1	No goal for the total	80	ppb	No	By-product of drinking water disinfection
Bromate	2019	6.3	5.2 - 6.3	5	10	ppb	No	By-product of drinking water ozonation.
								l ecause some results may be part of an
evaluation to determi	ne where	compliance Highest	sampling should occ	ur in the f	uture.	TCEQ o	nly requ	uires one sample annually for compliance
Inorganic Contami- nants	Collec- tion Date	Level De- tected	Range of Levels Detected	MCLG	MCL	Units	Viola- tion	Likely Source of Contamination
Antimony	2019	Levels lower than detect level	0 - 0	6	6	ppb	No	Discharge from petroleum refineries; fir retardants; ceramics; electronics; solde and test addition.
Arsenic	2019	Levels lower than detect level	0 - 0	0	10	ppb	No	Erosion of natural deposits; runoff from orchards; runoff from glass and electror ics production wastes.
Barium	2019	0.044	0.043 - 0.044	2	2	ppm	No	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.
Beryllium	2019	Levels lower than detect level	0 - 0	4	4	ppb	No	Discharge from metal refineries and coa -burning factories; discharge from elect cal, aerospace, and defense industries.
Cadmium	2019	Levels lower than detect level	0 - 0	5	5	ppb	No	Corrosion of galvanized pipes; erosion natural deposits; discharge from metal refineries; runoff from waste batteries and paints.
Chromium	2019	Levels lower than detect level	0 - 0	100	100	ppb	No	Discharge from steel and pulp mills; ero sion of natural deposits.
Fluoride	2019	0.230	0.215 - 0.230	4	4	ppm	No	Erosion of natural deposits; water addi- tive which promotes strong teeth; dis- charge from fertilizer and aluminum fac tories.
Mercury	2019	Levels lower than detect level	0 - 0	2	2	ppb	No	Erosion of natural deposits; discharge from refineries and factories; runoff fror landfills; runoff from cropland.
Nitrate (measured as Nitrogen)	2019	0.772	0.083 - 0.772	10	10	ppm	No	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natura deposits.
Selenium	2019	Levels lower than detect level	0 - 0	50	50	ppb	No	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines.
Thallium	2019	Levels lower than detect level	0 - 0	0.5	2	ppb	No	Discharge from electronics, glass, and leaching from ore-processing sites; dru factories.

Nitrate Advisory: Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agri-

Wylie Treatment Plant

	1.1							
Radioactive Contami- nants	Collec- tion Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Viola- tion	Likely Source of Contamination
Beta/photon emitters	2018	8.0	8.0 - 8.0	0	50	pCi/L	No	Decay of natural and man-made deposits.
Gross alpha excluding radon and uranium	2018	Lower than detect level	0 - 0	0	15	pCi/L	No	Erosion of natural deposits.
Radium	2018	Lower than detect level	0 - 0	0	5	pCi/L	No	Erosion of natural deposits.
Synthetic organic con- taminants including pesticides and herbi- cides	Collec- tion Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Viola- tion	Likely Source of Contamination
2, 4, 5 - TP (Silvex)	2019	Lower than detect level	0 - 0	50	50	ppb	No	Residue of banned herbicide.
2, 4 - D	2019	Lower than detect level	0 - 0	70	70	ppb	No	Runoff from herbicide used on row crops.
Alachlor	2019	Lower than detect level	0 - 0	0	2	ppb	No	Runoff from herbicide used on row crops.
Aldicarb	2019	Lower than detect level	0 - 0	0	3	ppb	No	Runoff from herbicide used on row crops.
Aldicarb Sulfone	2019	Lower than detect level	0 - 0	0	2	ppb	No	Runoff from herbicide used on row crops.
Alsdicarb Solfoxide	2019	Lower than detect level	0 - 0	3	4	ppb	No	Runoff from herbicide used on row crops.
Atrazine	2019	0.2	0.1 - 0.2	3	3	ppb	No	Runoff from herbicide used on row crops.
Benzo (a) pyrene	2019	Lower than detect level	0 - 0	0	200	ppt	No	Leaching from linings of water storage tanks and distribution lines.
Carbofuran	2019	Lower than detect level	0 - 0	40	40	ppb	No	Leaching of soil fumigant used on rice and alfalfa.
Chlordane	2019	Lower than detect level	0 - 0	0	2	ppb	No	Residue of banned termiticide.
Dalapon	2019	Lower than detect level	0 - 0	200	200	ppb	No	Runoff from herbicide used on rights of way.
Di (2-ethylhexyl) adipate	2019	Lower than detect level	0 - 0	400	400	ppb	No	Discharge from chemical factories.
Di (2-ethylhexyl) phthalate	2019	Lower than detect level	0 - 0	0	6	ppb	No	Discharge from rubber and chemical fac- tories.
Dibromochloropropane (DBCP)	2019	Lower than detect level	0 - 0	0	200	ppt	No	Runoff / leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards.
Dinoseb	2019	Lower than detect level	0 - 0	7	7	ppb	No	Runoff from herbicide used on soybeans and vegetables.
Endrin	2019	Lower than detect level	0 - 0	2	2	ppb	No	Residue of banned insecticide.
Ethylene dibromide	2019	Lower than detect level	0 - 0	0	50	ppt	No	Discharge from petroleium refineries.
Heptachlor	2019	Lower than detect level	0 - 0	0	400	ppt	No	Residue of banned termiticide.
Heptachlor epoxide	2019	Lower than detect level	0 - 0	0	200	ppt	No	Breakdown of heptachlor.
Hexachlorobenzene	2019	Lower than detect level	0 - 0	0	1	ppb	No	Discharge from metal refineries and agri- cultural chemical factories.
Hexachlorocyclopenta- diene	2019	Lower than detect level	0 - 0	50	50	ppb	No	Discharge from chemical factories.
Lindane	2019	Lower than detect level	0 - 0	200	200	ppt	No	Runoff / leaching from insecticide used on cattle, lumber, and gardens.
Methoxychlor	2019	Lower than detect level	0 - 0	40	40	ppb	No	Runoff / leaching from insecticide used on fruits, vegetables, alfalfa, and livestock.
Oxamyl [Vydate]	2019	Lower than detect level	0 - 0	200	200	ppb	No	Runoff / leaching from insecticide used on apples, potatoes, and tomatoes.
Pentachlorophenol	2019	Lower than detect level	0 - 0	0	1	ppb	No	Discharge from wood preserving facto- ries.
Picloram	2019	Lower than detect level	0 - 0	4	500	ppb	No	Herbicide runoff.
Simazine	2019	0.33	0.32 - 0.33	4	4	ppb	No	Herbicide runoff.
Toxaphene	2019	Lower than detect level	0 - 0	0	3	ppb	No	Runoff / leaching from insecticide used on cotton and cattle.

Highest single measurement

Wylie Treatment Plant

Volatile Organic Con- taminants	Collection Date	Highest Lev- el Detected	Range of Levels De- tected	MCLG	MCL	Units	Viola- tion	Likely Source of Contamination
1, 1, 1 - Trichloro- ethane	2019	Lower than detect level	0 - 0	200	200	ppb	No	Discharge from metal degreasing sites and other factories.
1, 1, 2 - Trichloro- ethane	2019	Lower than detect level	0 - 0	3	5	ppb	No	Discharge from industrial chemical facto- ries.
1, 1 - Dichloroeth- ylene	2019	Lower than detect level	0 - 0	7	7	ppb	No	Discharge from industrial chemical facto- ries.
1, 2, 4 - Trichloroben- zene	2019	Lower than detect level	0 - 0	70	70	ppb	No	Discharge from textile-finishing factories.
1, 2 - Dichloroethane	2019	Lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical facto- ries.
1, 2 - Dichloropro- pane	2019	Lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical facto- ries.
Benzene	2019	Lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories; leaching from gas storage tanks and landfills.
Carbon Tetrachloride	2019	Lower than detect level	0-0	0	5	ppb	No	Discharge from chemical plants and other industrial activities.
Volatile Organic Con- taminants	Collection Date	Highest Lev- el Detected	Range of Levels De- tected	MCLG	MCL	Units	Viola- tion	Likely Source of Contamination
Chlorobenzene	2019	Lower than detect level	0 - 0	100	100	ppb	No	Discharge from chemical and agricultural chemical factories.
Dichloromethane	2019	Lower than detect level	0 - 0	0	5	ppb	No	Discharge from pharmaceutical and chemi- cal factories.
Ethylbenzene	2019	Lower than detect level	0 - 0	0	700	ppb	No	Discharge from petroleum refineries.
Styrene	2019	Lower than detect level	0 - 0	100	100	ppb	No	Discharge from rubber and plastic facto- ries; leaching from landfills.
Tetrachloroethylene	2019	Lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories and dry cleaners.
Toluene	2019	Lower than detect level	0 - 0	1	1	ppm	No	Discharge from petroleum factories.
Trichloroethylene	2019	Lower than detect level	0 - 0	0	5	ppb	No	Discharge from metal degreasing sites and other factories.
Vinyl Chloride	2019	Lower than detect level	0-0	0	2	ppb	No	Leaching from PVC piping; discharge from plastics factories.
Xylenes	2019	Lower than detect level	0 - 0	10	10	ppm	No	Discharge from petroleum factories; dis- charge from chemical factories.
cis - 1, 2 - Dichloro- ethylene	2019	Lower than detect level	0 - 0	70	70	ppb	No	Discharge industrial chemical factories.
o - Dichlorobenzene	2019	Lower than detect level	0 - 0	600	600	ppb	No	Discharge ndustrial chemical factories.
p - Dichlorobenzene	2019	Lower than detect level	0 - 0	75	75	ppb	No	Discharge industrial chemical factories.
trans - 1, 2 - Dicholo- roethylene	2019	Lower than detect level	0 - 0	100	100	ppb	No	Discharge industrial chemical factories.
			Tu Limit (Treatment Techn	urbidi _{ique)}		Detected	Viola- tion	Likely Source of Contamination

Lowest monthly percentage meeting limit	0.3 NTU	95.50%	No	Soil runoff.	
NOTE: Tout i dita in a management of the allowed in a	and the state of t	المثابية والمتعاد والمتعادية	\//-	the second second states and the second states and the states of the second states and	

0.97

No

Soil runoff.

1 NTU

NOTE: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of

Maximum Residual Disinfectant Level

Disinfectant Type	Year	Average Level of Quarterly Data	Lowest Result of Single Sample	Highest Result of Single Sample		MRDLG	Units	Source of Chemical
Chlorine Residual (Chloramines)	2019	3.87	2.13	3.11	4.00	< 4.0	ppm	Disinfectant used to control microbes.
Chlorine Dioxide	2019	0	0	0	0.80	0.80	ppm	Disinfectant.
Chlorite	2019	0.04	0.00	0.42	1.00	N/A	ppm	Disinfectant.

NOTE: Water providers are required to maintain a minimum chlorine disinfection residual level of 0.5 parts per million (ppm) for systems disinfecting with chloramines and an annual average chlorine disinfection residual level of between 0.5 (ppm) and 4 (ppm)

Wylie Treatment Plant

	Total Organic Carbon											
	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination							
Source Water	2019	5.08	3.89 - 5.08	ppm	Naturally present in the environment.							
Drinking Water	2019	3.60	1.55 - 3.60	ppm	Naturally present in the environment.							
Removal Ratio	2019	63.3	19.3 - 63.3	% removal *	N/A							

NOTE: Total organic carbon (TOC) has no health effects. The disinfectant can combine with TOC to form disinfection by-products. Disinfection is necessary to ensure that water does not have unacceptable levels of pathogens. By-products of disinfection include trihalomethanes (THMs) and haloacetic acids (HAA) which are reported elsewhere in this report. Removal ratio is the percent of TOC removed by the treatment process divided by the percent of the TOC required by TCEQ to be removed.

	Cryptosporidium and Giardia											
Contaminants	ghest Level Detected	Range of Levels Detected			Likely Source of Contamination							
Cryptosporidium	2019		0	0 - 0	(Oo) Cysts/L		Human and animal fecal waste.					
Giardia	2019		0	0 - 0	(Oo) Cysts/L		Human and animal fecal waste.					
	Lead and Copper											
Lead and Copper	Date Sampled	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Viola- tion	Likely Source of Contamination					
Lead	2017	15	1.3	1.03	ppb		Corrosion of household plumbing systems; erosion of natural deposits.					
Copper	2017	1.3	15	0.1603	ppm		Erosion of natural deposits; leaching from wood preservatives; corrosion of household plumbing systems.					

ADDITIONAL HEALTH INFORMATION FOR LEAD: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. GSSUD is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure @ http://www.epa.gov/safewater/lead

Unregulated Contaminants

Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Chloroform	2019	34.9	17.85	ppb	By-product of drinking water disinfection.
Bromoform	2019	3.7	1.54	ppb	By-product of drinking water disinfection.
Bromodichloro- methane	2019	16.6	10.82	ppb	By-product of drinking water disinfection.
Dibromochloro- methane	2019	10.2	5.99	ppb	By-product of drinking water disinfection.

NOTE: Bromoform, chloroform, dichlorobromomethane, and dibromochloromethane are disinfection by-products. There is no maximum contaminant level for these chemicals at the entry point distribution.

	S	econdary and Other	Constituer	nts Not Re	gulated
Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Aluminum	2019 Levels lower than detect level		0 - 0	ppm	Erosion of natural deposits.
Calcium	2019	60.7	60.6 - 60.7	ppm 🤍	Abundant naturally occurring element.
Chloride	Chloride 2019 65.3		11.6 - 65.3	ppm	Abundant naturally occurring element; used in water purification; by-product of oil field activity.
Iron	2019	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits; iron or steel water delivery equipment or facilities.
Magnesium	2019	4.47	4.39 - 4.47	ppm	Abundant naturally occurring element.
Manganese	2019	0.0048	0.0046 - 0.0048	ppm	Abundant naturally occurring element.
Nickel	2019	0.0051	0.0049 - 0.0051	ppm	Erosion of natural deposits.
рН	2019	8.65	7.94 - 8.65	units	Measure of corrosivity of water.
Silver	2019	Levels lower than detect level	0 - 0	0	Erosion of natural deposits.
Sodium	2019	40.0	39.8 - 40.0	ppm	Erosion of natural deposits;oil field activity.
Sulfate	2019	132	34.8 <mark>-</mark> 132	ppm	Naturally occurring; common industrial by- product; by-product of oil field activity.
Total Alkalinity as CaCO3	2019	119	81 - 119	ppm	Naturally occurring soluble mineral salts.
Total Dissolved Sol- ids	2019	534	250 - 534	ppm	Total dissolved mineral constituents in wa- ter.
Total Hardness as CaCO3	2019	191	114 - 191	ppm	Naturally occurring calcium.
Zinc	2019	Levels lower than detect level	0 - 0	ppm	Moderately abundant naturally occurring element used in the metal industry.

Tawakoni Treatment Plant

	Coliform Bacteria										
Maximum Contami- nant Level Goal	Total Coliform Maxi- mum Contaminant Level	Highest No. of Posi- tive		E. Coli or Fecal	Viola- tion	Likely Source of Contamination					
0	1 positive monthly sample	0.00	0	0		Naturally present in the environment.					

NOTE: Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. If coliforms are found, this indicates the need to look for potential problems in water treatment or distribution. When this occurs, systems are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments. A Level 1 assessment must be conducted when a PWS exceeds one or more of the Level 1 treatment technique triggers specified previously. Under the rule, this self-assessment consists of a basic examination of the source water, treatment, distribution system and relevant operational practices. The PWS should look at conditions that could have occurred prior to and caused the total coliform-positive sample. Example conditions include treatment process interruptions, loss of pressure, maintenance and operation activities, recent operational changes, etc. In addition, the PWS should check the conditions of the following elements: sample sites, distribution system, storage tanks, source water, etc. If the number of positive samples is below the required action level, then no assessment is performed. *E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely compromised immune systems. When E. coli bacteria are found, this indicates the need to look for potential problems in water treatment or distribution. When this occurs, systems are required to conduct level 2 assessment(s) to identify problems and to correct any problems that were found during these assessments.*

Regulated Contaminants

Disinfectants and Disinfection By- Products	Collec- tion Date	Highest Level De- tected	Range of Levels De- tected	MCLG	MCL	Units	Viola- tion	Likely Source of Contamination
Total Haloacetic Ac- ids (HAA5)	2019	22.7	37.1	No goal for the total	60	ppb	0	By-product of drinking water disinfection.
Total Trihalome- thanes (TTHM)	2019	43.3	77.1	No goal for the total	80	ppb	0	By-product of drinking water disinfection.
Bromate	2019	Lower than detect level	0 - 0	5	10	ppb	No	By-product of drinking water ozonation.

NOTE: Not all sample results may have been used for calculating the Highest Level Detected because some results may be part of an evaluation to determine where compliance sampling should occur in the future. TCEQ only requires one sample annually for compliance testing.

Inorganic Contami- nants	Collec- tion Date	Highest Level De- tected	Range of Levels De- tected	MCLG	MCL	Units	Viola- tion	Likely Source of Contamination
Antimony	2019	Lower than detect level	0 - 0	6	6	ppb	No	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; and test addition.
Arsenic	2019	Lower than detect level	0 - 0	0	10	ppb	No	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.
Barium	2019	0.043	0.043 - 0.043	2	2	ppm	No	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits.
Beryllium	2019	Lower than detect level	0 - 0	4	4	ppb	No	Discharge from metal refineries and coal- burning factories; discharge from electri- cal, aerospace, and defense industries.
Cadmium	2019	Lower than detect level	0 - 0	5	5	ppb	No	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints.
Chromium	2019	Lower than detect level	0 - 0	100	100	ppb	No	Discharge from steel and pulp mills; ero- sion of natural deposits.
Fluoride	2019	0.486	0.486 - 0.486	4	4	ppm	No	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories.
Mercury	2019	Lower than detect level	0-0	2	2	ppb	No	Erosion of natural deposits; discharge from refineries and factories; runoff from land- fills; runoff from cropland.

Page 8	U		Tawakor	ni Treat	tment	Plant		
Nitrate (measured as Nitrogen)	2019	0.428	0.428 - 0.428	10	10	ppm	No	Runoff from fertilizer use; leaching from septic tanks; sewage; erosion of natural deposits.
Selenium	2019	Lower than detect level	0 - 0	50	50	ppb	No	Discharge from petroleum and metal refir eries; erosion of natural deposits; dis- charge from mines.
Thallium	2019	Lower than detect level	0 - 0	0.5	2	ppb	No	Discharge from electronics, glass, and leaching from ore-processing sites; drug factories.
								han six months of age. High nitrate levels
baby syndrome. Nitrat care provider.	e levels m	ay rise quick	ly for short periods of	time beca	ause of	rainfall o	or agricul	tural activity. If you are caring for an infan
Radioactive Contami- nants	Collec- tion Date	Highest Level De-	Range of Levels De- tected	MCLG	MCL	Units	Viola- tion	Likely Source of Contamination
Beta/photon emitters	2018	Lower than detect level	0 - 0	0	50	pCi/L	No	Decay of natural and man-made deposits
Gross alpha exclud- ing radon and uranium	2018	Lower than detect level	0 - 0	0	15	pCi/L	No	Erosion of natural deposits.
Radium	2018	Lower than detect level	0 - 0	0	5	pCi/L	No	Erosion of natural deposits.
Synthetic organic contaminants includ- ing pesticides and herbicides	Collec- tion Date	Highest Level De- tected	Range of Levels De- tected	MCLG	MCL	Units	Viola- tion	Likely Source of Contamination
2, 4, 5 - TP (Silvex)	2018	Lower than detect level	0 - 0	50	50	ppb	No	Residue of banned herbicide.
2, 4 - D	2018	Lower than detect level	0 - 0	70	70	ppb	No	Runoff from herbicide used on row crops
Alachlor	2018	Lower than detect level	0 - 0	0	2	ppb	No	Runoff from herbicide used on row crops
Aldicarb	2018	Lower than detect level	0 - 0	0	3	ppb	No	Runoff from pesticide used on row crops.
Aldicarb Sulfone	2018	Lower than detect level	0 - 0	0	2	ppb	No	Runoff from pesticide used on row crops.
Alsdicarb Solfoxide	2018	Lower than detect level	0 - 0	3	4	ppb	No	Runoff from pesticide used on row crops.
Atrazine	2018	0.2	0.2 - 0.2	3	3	ppb	No	Runoff from herbicide used on row crops
Benzo (a) pyrene	2018	Lower than detect level	0 - 0	0	200	ppt	No	Leaching from linings of water storage tanks and distribution lines.
Carbofuran	2018	Lower than detect level	0 - 0	40	40	ppb	No	Leaching of soil fumigant used on rice an alfalfa.
Chlordane	2018	Lower than detect level	0 - 0	0	2	ppb	No	Residue of banned termiticide.
Dalapon	2018	Lower than detect level	0 - 0	200	200	ppb	No	Runoff from herbicide used on rights of way.
Di (2-ethylhexyl) adipate	2018	Lower than detect level	0 - 0	400	400	ppb	No	Discharge from chemical factories.
Di (2-ethylhexyl) phthalate	2018	Lower than detect level	0 - 0	0	6	ppb	No	Discharge from rubber and chemical fact ries.
Dibromochloropro- pane (DBCP)	2018	Lower than detect level	0 - 0	0	200	ppt	No	Runoff / leaching from soil fumigant used on soybeans, cotton, pineapples, and or- chards.
Dinoseb	2018	Lower than detect level	0 - 0	7	7	ppb	No	Runoff from herbicide used on soybeans and vegetables.
Endrin	2018	Lower than detect level	0 - 0	2	2	ppb	No	Residue of banned insecticide.
Ethylene dibromide	2018	Lower than detect level	0 - 0	0	50	ppt	No	Discharge from petroleium refineries.
Heptachlor	2018	Lower than detect level	0-0	0	400	ppt	No	Residue of banned termiticide.

Tawakoni Treatment Plant

Page 9			Tawakoni	Treatm	ient P	lant		
Heptachlor epoxide	2018	Lower than detect level	0 - 0	0	200	ppt	No	Breakdown of heptachlor.
Hexachlorobenzene	2018	Lower than detect level	0 - 0	0	1	ppb	No	Discharge from metal refineries and agri- cultural chemical factories.
Hexachlorocyclopen- tadiene	2018	Lower than detect level	0 - 0	50	50	ppb	No	Discharge from chemical factories.
Lindane	2018	Lower than detect level	0 - 0	200	200	ppt	No	Runoff / leaching from insecticide used on cattle, lumber, and gardens.
Methoxychlor	2018	Lower than detect level	0 - 0	40	40	ppb	No	Runoff / leaching from insecticide used on fruits, vegetables, alfalfa, and livestock.
Oxamyl [Vydate]	2018	Lower than detect level	0 - 0	200	200	ppb	No	Runoff / leaching from insecticide used on apples, potatoes, and tomatoes.
Pentachlorophenol	2018	Lower than detect level	0 - 0	0	1	ppb	No	Discharge from wood preserving factories.
Picloram	2018	Lower than detect level	0 - 0	4	500	ppb	No	Herbicide runoff.
Simazine	2018	Lower than detect level	0 - 0	4	4	ppb	No	Herbicide runoff.
Toxaphene	2018	Lower than detect level	0 - 0	0	3	ppb	No	Runoff / leaching from insecticide used on cotton and cattle.
Volatile Organic Con- taminants	Collec- tion Date	Highest Level De-	Range of Levels De- tected	MCLG	MCL	Units	Viola- tion	Likely Source of Contamination
1, 1, 1 - Trichloro- ethane	2019	Lower than detect level	0-0	200	200	ppb	No	Discharge from metal degreasing sites and other factories.
1, 1, 2 - Trichloro- ethane	2019	Lower than detect level	0 - 0	3	5	ppb	No	Discharge from industrial chemical facto- ries.
1, 1 - Dichloroeth- ylene	2019	Lower than detect level	0 - 0	7	7	ppb	No	Discharge from industrial chemical facto- ries.
1, 2, 4 - Trichloroben- zene	2019	Lower than detect level	0 - 0	70	70	ppb	No	Discharge from textile-finishing factories.
1, 2 - Dichloroethane	2019	Lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical facto- ries.
1, 2 - Dichloropro- pane	2019	Lower than detect level	0 - 0	0	5	ppb	No	Discharge from industrial chemical facto- ries.
Benzene	2019	Lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories; leaching from gas storage tanks and landfills.
Carbon Tetrachloride	2019	Lower than detect level	0 - 0	0	5	ppb	No	Discharge from chemical plants and other industrial activities.
Volatile Organic Con- taminants	Collec- tion Date	Highest Level De-	Range of Levels De- tected	MCLG	MCL	Units	Viola- tion	Likely Source of Contamination
Chlorobenzene	2019	Lower than detect level	0 - 0	100	100	ppb	No	Discharge from chemical and agricultural chemical factories.
Dichloromethane	2019	Lower than detect level	0 - 0	0	5	ppb	No	Discharge from pharmaceutical and chem- ical factories.
Ethylbenzene	2019	Lower than detect level	0 - 0	0	700	ppb	No	Discharge from petroleum refineries.
Styrene	2019	Lower than detect level	0 - 0	100	100	ppb	No	Discharge from rubber and plastic facto- ries; leaching from landfills.
Tetrachloroethylene	2019	Lower than detect level	0 - 0	0	5	ppb	No	Discharge from factories and dry cleaners.
Toluene	2019	Lower than detect level	0 - 0	1	1	ppm	No	Discharge from petroleum factories.
Trichloroethylene	2019	Lower than detect level	0 - 0	0	5	ppb	No	Discharge from metal degreasing sites and other factories.
Vinyl Chloride	2019	Lower than detect level	0 - 0	0	2	ppb	No	Leaching from PVC piping; discharge from plastics factories.
Xylenes	2019	Lower than detect level	0 - 0	10	10	ppm	No	Discharge from petroleum factories; dis- charge from chemical factories.
cis - 1, 2 - Dichloro- ethylene	2019	Lower than detect level	0 - 0	70	70	ppb	No	Discharge from industrial chemical facto- ries.
o - Dichlorobenzene	2019	Lower than detect level	0 - 0	600	600	ppb	No	Discharge from industrial chemical facto- ries.
				1				

Tawakoni Treatment Plant

p - Dichlorobenzene	2019	Lower than detect level	0 - 0	75	75	ppb	No	Discharge from industrial chemical facto- ries.	
trans - 1, 2 - Dicholo- roethylene	2019	Lower than detect level	0 - 0	100	100	ppb	No	Discharge from industrial chemical facto- ries.	
Turbidity									
			Limit (Treatment Technique)		Level Detected		Viola- tion	Likely Source of Contamination	
Highest single measurement			1 NTU		0.	14	No	Soil runoff.	
Lowest monthly percentage (%) meeting limit			0.3 NTU		100.00%		No	Soil runoff.	
NOTE: Turbidity is a r cloudiness of the wate ed particles. We monit good indicator of wate tiveness of our filtration.	r caused l or it beca	by suspend- use it is a		5	0	•	0		

Maximum Residual Disinfectant Level

Disinfectant Type	Year	Average Level	Minimum Level	Maximum Level		MRDLG	Units	Source of Chemical
Chlorine Residual (Chloramines)	2019	3.87	2.13	3.11	4.00	<4.0	ppm	Disinfectant used to control microbes.
Chlorine Dioxide	2019	0	0	0	0.80	0.80	ppm	Disinfectant.
Chlorite	2019	0.12	0.01	0.45	1.00	N/A	ppm	Disinfectant.
NOTE: Water provide	ro aro rogu	uirod to					1000	

NOTE: Water providers are required to maintain a minimum chlorine disinfection

residual level of 0.5 parts per million (ppm)

for systems disinfecting with chloramines

and an annual

average chlorine disinfection residual level of between 0.5 (ppm) and 4 parts per million (ppm).

Total Organic Carbon

	Collec- tion Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Source Water	2019	5.71	4.85 - 5.71	ppm	Naturally present in the environment.
Drinking Water	2019	3.04	1.83 - 3.04	ppm	Naturally present in the environment.
Removal Ratio	2019	74.2%	40.6 - 74.2	% removal *	N/A

NOTE: Total organic carbon (TOC) has no health effects. The disinfectant can combine with TOC to form disinfection by-products. Disinfection is necessary to ensure that water

does not have unacceptable levels of pathogens. By-products of disinfection include trihalomethanes (THMs) and haloacetic acids (HAA) which are reported elsewhere in this report.

Removal ratio is the percent of TOC removed by the treatment process divided by the ed.

percent of TOC required by TCEQ to be remo
--

Cryptosporidium and Giardia								
Contaminants	Collec- tion Date			Range of Levels Detected	Units		Likely Source of Contamination	
Cryptosporidium	2018	0		0 - 0	(Oo) Cysts/L		Human and animal fecal waste.	
Giardia	2018	0		0 - 0	(Oo) Cysts/L		Human and animal fecal waste.	
Lead and Copper								
Lead and Copper	Date Sampled	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Viola- tion	Likely Source of Contamination	
Lead	207	15	1.3	1.03	ppb		Erosion of natural deposits; leaching from wood preservatives; corrosion of house- hold plumbing systems.	
Copper	2017	1.3	15	0.1603	ppm		Corrosion of household plumbing systems; erosion of natural deposits.	
nant women and your	DDITIONAL HEALTH INFORMATION FOR LEAD: If present, elevated levels of lead can cause serious health problems, especially for preg- ant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home lumbing. GSSUD is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing compo-							

nents. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 sec-onds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure @ http://www.epa.gov/safewater/ lead

Unregulated Contaminants

Contaminants	Collec- tion Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination
Chloroform	2019	34.9	17.85	ppb	By-product of drinking water disinfection.
Bromoform	2019	3.7	1.54	ppb	By-product of drinking water disinfection.
Bromodichloro- methane	2019	16.6	10.82	ppb	By-product of drinking water disinfection.
Dibromochloro- methane	2019	10.2	5.99	ppb	By-product of drinking water disinfection.

NOTE: Bromoform, chloroform, dichlorobromomethane, and dibromochloromethane are disinfection by-products. There is no maximum contaminant level for these chemicals at the entry point to distribution.

Secondary and Other Constituents Not Regulated									
Contaminants	Collec- tion Date	Highest Level Detected	Range of Levels Detected	Units	Likely Source of Contamination				
Aluminum	2019	0.041	0.041 - 0.041	ppm	Erosion of natural deposits.				
Calcium	2019	34	34 - 34	ppm	Abundant naturally occurring element.				
Chloride	2019	15.9	9.22 - 15.9	ppm	Abundant naturally occurring element; used in water purification; by-product of oil field activity.				
Iron	2019	Levels lower than detect level	0 - 0	ppm	Erosion of natural deposits; iron or steel water delivery equipment or facilities.				
Magnesium	2019	2.59	2.59 - 2.59	ppm	Abundant naturally occurring element.				
Manganese	2019	0.0021	0.0021 - 0.0021	ppm	Abundant naturally occurring element.				
Nickel	2019	0.0031	0.0031 - 0.0031	ppm	Erosion of natural deposits.				
pН	2019	8.70	7.50 - 8.70	units	Measure of corrosivity of water.				
Silver	2019	Levels lower than detect level	0 - 0	0	Erosion of natural deposits.				
Sodium	2019	12.2	12.2 - 12.2	ppm	Erosion of natural deposits; by-product of oil field activity.				
Sulfate	2019	70.3	49.1 - 70.3	ppm	Naturally occurring; common industrial by -product; by-product of oil field activity.				
Total Alkalinity as CaCO3	2019	67	53 - 67	ppm	Naturally occurring soluble mineral salts.				
Total Dissolved Sol- ids	2019	268	146 - 268	ppm	Total dissolved mineral constituents in water.				
Total Hardness as CaCO3	2019	112	97.6 - 112	ppm	Naturally occurring calcium.				
Zinc	2019	Levels lower than detect level	0 - 0	ppm	Moderately abundant naturally occurring element used in the metal industry.				